Introduction
Aaj kal jab bhi hum Artificial Intelligence (AI) aur Machine Learning (ML) ke baare mein baat karte hain, ek word aksar sunayi deta hai, wo hai Artificial Neural Network. Ye word sunte hi kuch logon ko shayad yeh thoda technical aur complex lagta hai, or Neural Networks ka main objective human brain ki tarah kaam karna hai, taaki hum apne computers aur machines se zyada accurate aur fast kaam kara sakein. To is article me aaj ap janenge ke ki what is artificial neural network in hindi with example
Artificial Neural Network ko hum ek limited intelligence ke roop mein samajh sakte hain, jo specific data se sikhta hai aur uske basis pe decisions le sakta hai
Toh, chaliye aaj samajhte hain, ki what is artificial neural network in hindi with example.
Artificial Neural Network Ka Itihas (History of Artificial Neural Networks)
Jaise kisi bhi naye technology ka ek lamba safar hota hai, waise hi Artificial Neural Networks ka bhi ek apna history hai. Is technology ki foundation 1950s-60s ke dauran rakhi gayi thi. Shuruat mein isey sirf ek research topic ke roop mein dekha gaya tha, lekin dheere-dheere iska development hua aur aaj yeh machine learning ka ek important part ban gaya hai.
Pehla Neural Network, jise “Perceptron” kaha gaya tha, 1958 mein Frank Rosenblatt ne develop kiya tha. Iska main goal tha ki machines aisi systems seekh sakein, jo kisi input data ko le kar accurate decision le sakein. Halanki, shuruati dino mein Artificial Neural Network ke development mein kuch challenges aaye, lekin 1980s tak iski functionality improve hui aur phir 2000s ke baad, iska impact puri duniya mein dikhayi dene laga.
Artificial Neural Network Ki Structure (Structure of Artificial Neural Networks)

Jab hum Artificial Neural Network ke baare mein baat karte hain, toh sabse pehle humein iska structure samajhna zaroori hai. Neural Network ek living organism ke brain ki tarah hota hai, jisme kai neurons hote hain.
Neuron: Basic Unit
Har Neural Network ka sabse chhota aur important part uska neuron hota hai. Yeh neuron ek chhota processing unit ki tarah kaam karta hai, jo input data ko receive karta hai aur process karta hai.
Input Layer
Yeh network ka pehla layer hai, jahan data ka entry hota hai. Maan lijiye, agar aap ek image recognition program chala rahe hain, toh input layer ko ek image ke pixel data milenge.
Hidden Layer
Input layer ke baad hidden layer hota hai, jahan data process hota hai aur important information mein convert hota hai. Is layer mein kai neurons hote hain, jo ek dusre se connected hote hain. Yeh wo jagah hai, jahan network seekhta hai.
Output Layer
Yeh final layer hoti hai, jo processed data ka result provide karti hai. Yeh final decision hota hai, jaise kisi image ko recognize karna, kisi sound ko identify karna, ya kisi situation mein decision lena.
Activation Functions
Neural Network ko activate karne ke liye ek important element activation function hota hai. Iska kaam hota hai input data ko ek specific limit mein convert karna, taaki neuron sahi tareeke se kaam kare. Sabse common activation function sigmoid hota hai.
Artificial Neural Network Ka Kaam Karne Ka Tarika (Working of Artificial Neural Networks)
Ab jab hum Neural Network ke structure ko samajh chuke hain, toh samajhte hain ki yeh kaise kaam karta hai.
Data Processing
Neural Network tab kaam karna start karta hai jab ise kisi type ka data milta hai, jaise image, text, ya audio. Yeh data pehle input layer se pass hota hai aur phir hidden layer mein process hota hai.
Weights Aur Biases
Network ke andar har neuron ke beech ek weight hota hai, jo yeh decide karta hai ki data ka kitna impact hoga. Bias data ko aur accurate banane mein madad karta hai. Yeh dono elements network ko accurate results tak pahuchne mein madad karte hain.
Feedforward Aur Backpropagation
Feedforward mein data ek hi direction mein flow karta hai – input se output tak. Lekin jab backpropagation hoti hai, tab network apni galtiyaan samajh kar unhe sudharta hai. Backpropagation, network ko sudharne aur aur accurate banane ka process hai.
Artificial Neural Network Ke Prakar (Types of Artificial Neural Networks)
Artificial Neural Networks ke kai prakar hote hain, jo alag-alag tasks mein use kiye jaate hain.
- Feedforward Neural Network
Yeh sabse basic type ka neural network hai, jisme data ek hi direction mein flow karta hai. Yeh mainly classification aur prediction tasks mein use hota hai. - Recurrent Neural Network (RNN)
Yeh type network ko data ko wapas bhejne ki ability deta hai. Yeh special type ka network hai jo time-series data (jaise speech data) ko process karne ke liye useful hota hai. - Convolutional Neural Network (CNN)
Yeh network specially image processing ke liye design kiya gaya hai. Yeh network image ke features ko identify aur classify karne mein kaafi effective hai.
Artificial Neural Network Ke Upyog (Applications of Artificial Neural Networks)
Artificial Neural Networks ka use kai different fields mein ho raha hai, aur iska impact har din badhta jaa raha hai.
1. Image Recognition
Aaj kal, image recognition mein Artificial Neural Networks ka bohot bada role hai. Google, Facebook, aur doosri companies is technology ka use karti hain taaki wo automatically images ko identify kar sakein.
2. Speech Recognition
Voice assistants jaise Google Assistant aur Alexa, Artificial Neural Networks ki madad se hi accurate decisions lete hain.
3. Autonomous Vehicles
Self-driving cars mein, Artificial Neural Networks ka use environment ke data ko samajhne ke liye kiya jata hai. Yeh technology car ko apne surroundings ke baare mein samajh aur react karne mein madad karti hai.
4. Medical Diagnosis
Ab Neural Networks doctors ki madad kar rahe hain taaki wo diseases ko accurately diagnose kar sakein. Yeh technology medical field mein ek huge breakthrough hai.
5. Financial Sector
Finance mein, yeh fraud detection aur stock market prediction jaise kaam karne ke liye use hota hai.
Artificial Neural Network Ke Faayde Aur Chunautiyan (Advantages and Challenges of Artificial Neural Networks)
Faayde
- Accuracy: Neural Networks apne tasks mein kaafi accurate ho sakte hain.
- Learning Capacity: Yeh network time ke saath improve hota rehta hai kyunki yeh data se seekhta hai.
- Automation: Neural Networks complex tasks ko automatically perform kar sakte hain.
Chunautiyan
- Data Ki Zarurat: Neural Networks ko sahi results paane ke liye bahut zyada data ki zarurat hoti hai.
- Computational Resources: Large networks ko train karne ke liye heavy computing power chahiye hoti hai.
- Interpretability: Kabhi-kabhi yeh samajhna mushkil hota hai ki network ne decision kyun liya.
You can also check this video for machine learning.
To is article me aapne jana ki what is artificial neural network in hindi with example
Also read our this blog post.
What is software in hindi
Machine learning in hindi
How does Uber work when you schedule a ride
How to make money making websites